big data
Ciencia y Tecnología

Data science qué es y cómo funciona

El conocimiento sobre los elementos básicos de la data science y qué es, es un recurso que muchas empresas buscan actualmente. El ámbito empresarial se ha visto muy beneficiado de esta tecnología gracias a las ventajas que aporta en cuanto a marketing. La ciencia de datos, además, ofrece una amplia variedad de funciones en otros campos. En este texto mostraremos de qué se trata esta disciplina y cómo influye en el día a día.

Image
Maestría Oficial en Big Data y Ciencia de Datos - LATAM

¿Qué es data science?

La ciencia de datos es una disciplina que se centra en el análisis y estudio minucioso de información mediante diversos procesos. La data se obtiene a través de sistemas de software y se almacena en una base de datos para su posterior examinación. Un especialista en el área, como un ingeniero en sistemas, por ejemplo, emplea conocimientos de estadística y matemática para hallar patrones en los datos de muestra. Se trata de una tarea que nos permite sustraer información clave para el desarrollo de un proyecto, como una campaña de marketing o investigaciones científicas.

Tanto big data como data science tienen una estrecha relación, principalmente, porque son disciplinas que dependen entre sí para alcanzar un funcionamiento y rendimiento total. Esta práctica ha ganado suma relevancia a lo largo de los últimos diez años, sobre todo, debido al desarrollo de nuevas tecnologías. El crecimiento empresarial global se ha visto influenciado en gran medida por esta herramienta. La razón principal es que, al haber una mayor cantidad de negocios online, el flujo de datos es mucho mayor.

Objetivos

En términos básicos, la ciencia de datos contribuye a organizar la información no estructurada contenida en un directorio digital. Al ejecutar dicha acción, un experto en análisis de datos puede realizar comparaciones con antecedentes para hallar variaciones en la información actual. Otra de sus metas es la de determinar qué ocurrió y qué puede ocurrir con la data almacenada en un período de tiempo específico.

En la actualidad, se utiliza esta tecnología para el desarrollo de plataformas sociales y la renovación de sistemas relacionados con la inteligencia artificial. La data science se encuentra presente en varias facetas de nuestras vidas diarias. Los sistemas de localización GPS, chats en línea y redes sociales, por ejemplo, hacen uso de esta herramienta para mejorar su rendimiento y adaptarse a nuevas funciones.

En la gran mayoría de casos, las empresas digitales utilizan los datos recopilados de sus usuarios para ajustar las plataformas a sus gustos y necesidades. Cabe mencionar que, al ser una ciencia relativamente nueva, su potencial total resulta un tanto difícil de medir. Sin embargo, cada año presenta avances sustanciales como consecuencia de la aplicación de nuevos y mejores sistemas de software especializado.

Tipos

Para entender en profundidad sobre la data science y qué es, es necesario que conozcamos las distintas clasificaciones que posee. Cada clase busca responder diferentes incógnitas científicas, utilizando métodos que se valen de la tecnología y la observación de patrones. Los principales tipos de data science son los siguientes:

  • Ciencia de datos descriptiva. Este tipo de análisis se enfoca en estudiar la información previamente obtenida y que forma parte del banco histórico de datos de una empresa. Tiene el objetivo de aportar una apreciación más clara y general sobre el rendimiento de la compañía en un lapso de tiempo determinado. De esta manera, se evalúa si ha habido cambios en los datos hasta la fecha.
  • Ciencia de datos diagnóstica. Se centra en determinar las causas que provocan alteraciones en la información estudiada.
  • Ciencia de datos predictiva. Nos ayuda a identificar los posibles cambios que pueden sufrir los datos en un futuro cercano o lejano. Esto es posible mediante la utilización de métodos estadísticos y modelos que permitan hallar patrones identificables en la información adquirida. Al hacer esto, podemos saber si las variaciones examinadas pueden o no volver a aparecer más adelante.
  • Ciencia de datos prescriptiva. Este tipo de análisis nos ayuda a crear estrategias para campañas de marketing, por ejemplo. Para ello, toma como referencia los recursos disponibles, el rendimiento pasado y las posibles situaciones para crear un informe detallado. Facilita la toma de decisiones en un negocio, puesto que nos detalla la mejor alternativa a seguir según la situación actual de la empresa.

Data science qué es y para qué sirve: aplicaciones

Entender más sobre la data science qué es y para qué sirve requiere identificar casos en donde dicha tecnología es aplicada con mayor frecuencia. En los correos electrónicos se observa como la ciencia de datos permite filtrar e-mails que podrían ser falsos o parte de una campaña de phishing. La plataforma analiza antecedentes en su banco de información para clasificar el texto en la carpeta de spam, protegiendo a sus usuarios.

Una Maestría en Big Data ofrece información sobre cómo el análisis de datos alcanza su mayor potencial cuando se emplea en el desarrollo de un negocio en línea. Los departamentos digitales toman todo el contenido necesario para poder crear sistemas de marketing más eficientes y con mayor precisión. Esta herramienta, además, es utilizada en sistemas de software de reconocimiento facial y dactilar que se pueden encontrar en dispositivos móviles y computadores portátiles.

Función

La data science nos proporciona una gran variedad de ventajas funcionales en diversos aspectos de nuestra cotidianidad. Algunas de las áreas en donde el análisis de datos mantiene un rendimiento eficaz son:

¿Qué es big data y data science?

Al principio del texto decíamos que tanto la data science como el big data están fundamentalmente relacionadas, pero ¿por qué? En primer lugar, debemos entender que los macrodatos (big data) son un conjunto de información sumamente compleja y grande. Dichos datos solamente pueden ser procesados y analizados al emplear tecnología de software especialmente programada para este propósito. Los datos son organizados y estructurados en modelos para su fácil visualización, y es aquí en donde la ciencia de datos toma lugar.

Entonces, al comparar ambos conceptos, tenemos que los macrodatos representan el material de estudio, mientras que la data science representa el proceso de análisis como tal. Ninguno de los dos puede existir sin el otro, puesto que, sin información que investigar, no puede haber una investigación de data, y no tendría sentido almacenar información si no se analizará.

¿Cómo se usa?

El análisis de datos masivos requiere de implementar una serie de procesos y herramientas tecnológicas que nos permitan obtener resultados precisos. Es importante contar con programas de computador que organicen la información en grupos, bien sea por valores numéricos, nombres, fecha de creación, etc. Al hacer esto, los modelos descriptivos y predictivos pueden ser mejor ejecutados a lo largo de todo el período de investigación.

Normalmente, se usan programas como Excel en los que se insertan textos en tablas. Allí se pueden programar ciertas funciones específicas para facilitar su manipulación. Al organizar cada elemento, se empiezan a efectuar ecuaciones y métodos estadísticos para encontrar modificaciones negativas o positivas en la información obtenida.

Una vez obtengamos los informes deseados, pasarán a manos del encargado del departamento para notificar a los superiores sobre el estudio realizado. La data science maneja este mismo método cuando se aplica en otras áreas como la seguridad informática o en el desarrollo de otras tecnologías.

El mejor lugar para estudiar sobre sistemas y análisis de datos

¡No esperes más e inscríbete hoy mismo en la Universidad Internacional de Valencia (VIU) y conoce más sobre data science y qué es! Contamos con cursos en donde sabrás todo acerca de la arquitectura big data y modelos informáticos utilizados en el mundo del marketing. Podrás aprender big data de la mano de profesionales con años de experiencia en el área. Ofrecemos más de 80 títulos diferentes válidos en todo el mundo. Disponemos de una oferta académica que cubre las carreras profesionales más solicitadas en la actualidad.

  • Seguridad informática. Las funciones de reconocimiento de patrones faciales, contraseñas, captchas, etc., son algunos de los principales métodos de ciberseguridad potenciados por la ciencia de datos. Cada vez que ingresamos en nuestras cuentas sociales o plataformas de pago, estamos dando información valiosa a las empresas para garantizar una navegación segura.
  • Publicidad digital. Es el campo que se ve más beneficiado por el uso de la data science. Aquí, dicha disciplina otorga a los negocios online las herramientas necesarias para llegar a su público objetivo con mayor facilidad y rapidez. Las campañas de marketing utilizan este método como pilar fundamental para incrementar las ventas, aprovechando leads e identificando las necesidades de los potenciales consumidores.
  • Innovación tecnológica. En este apartado, los científicos e ingenieros analizan data para desarrollar equipo de hardware y aplicaciones de software más sofisticados. Los procesadores Intel y tarjetas gráficas Nvidia son un buen ejemplo del uso constante de la data science en la industria informática.

Solicitar información

País *
Afganistán
Alandia
Albania
Alemania
Andorra
Angola
Anguilla
Antigua y Barbuda
Antártida
Arabia Saudí
Argelia
Argentina
Armenia
Aruba
Australia
Austria
Azerbaiyán
Bahamas
Bahrein
Bangladesh
Barbados
Belice
Benín
Bermudas
Bielorrusia
Bolivia
Bosnia y Herzegovina
Botswana
Brasil
Brunei
Bulgaria
Burkina Faso
Burundi
Bután
Bélgica
Cabo Verde
Camboya
Camerún
Canadá
Caribe Neerlandés
Catar
Chad
Chequia
Chile
China
Chipre
Ciudad del Vaticano
Colombia
Comoras
Congo
Congo (Rep. Dem.)
Corea del Norte
Corea del Sur
Costa Rica
Costa de Marfil
Croacia
Cuba
Curazao
Dinamarca
Djibouti
Dominica
Ecuador
Egipto
El Salvador
Emiratos Árabes Unidos
Eritrea
Eslovenia
España
Estados Unidos
Estonia
Etiopía
Filipinas
Finlandia
Fiyi
Francia
Gabón
Gambia
Georgia
Ghana
Gibraltar
Grecia
Grenada
Groenlandia
Guadalupe
Guam
Guatemala
Guayana Francesa
Guernsey
Guinea
Guinea Ecuatorial
Guinea-Bisáu
Guyana
Haití
Honduras
Hong Kong
Hungría
I. Georgias Sur
I. Vírgenes Británicas
I. Vírgenes EEUU
I.U. Menores EEUU
India
Indonesia
Irak
Iran
Irlanda
Isla Bouvet
Isla de Man
Isla de Navidad
Isla de Norfolk
Islandia
Islas Caimán
Islas Cocos o Islas Keeling
Islas Cook
Islas Faroe
Islas Heard y McDonald
Islas Malvinas
Islas Marianas del Norte
Islas Marshall
Islas Pitcairn
Islas Salomón
Islas Svalbard y Jan Mayen
Islas Tokelau
Islas Turks y Caicos
Israel
Italia
Jamaica
Japón
Jersey
Jordania
Kazajistán
Kenia
Kirguizistán
Kiribati
Kuwait
Laos
Lesotho
Letonia
Liberia
Libia
Liechtenstein
Lituania
Luxemburgo
Líbano
Macao
Macedonia del Norte
Madagascar
Malasia
Malawi
Maldivas
Mali
Malta
Marruecos
Martinica
Mauricio
Mauritania
Mayotte
Micronesia
Moldavia
Mongolia
Montenegro
Montserrat
Mozambique
Myanmar
México
Mónaco
Namibia
Nauru
Nepal
Nicaragua
Nigeria
Niue
Noruega
Nueva Caledonia
Nueva Zelanda
Níger
Omán
Pakistán
Palau
Palestina
Panamá
Papúa Nueva Guinea
Paraguay
Países Bajos
Perú
Polinesia Francesa
Polonia
Portugal
Puerto Rico
Reino Unido
República Centroafricana
República Dominicana
República Eslovaca
Reunión
Ruanda
Rumania
Rusia
Sahara Occidental
Saint Martin
Samoa
Samoa Americana
San Bartolomé
San Cristóbal y Nieves
San Marino
San Pedro y Miquelón
San Vicente y Granadinas
Santa Elena, Ascensión y Tristán de Acuña
Santa Lucía
Santo Tomé y Príncipe
Senegal
Serbia
Seychelles
Sierra Leone
Singapur
Sint Maarten
Siria
Somalia
Sri Lanka
Suazilandia
Sudáfrica
Sudán
Sudán del Sur
Suecia
Suiza
Surinam
T.A.A. Francesas
T.B. Océano Indico
Tailandia
Taiwán
Tanzania
Tayikistán
Timor Oriental
Togo
Tonga
Trinidad y Tobago
Turkmenistán
Turquía
Tuvalu
Túnez
Ucrania
Uganda
Uruguay
Uzbekistán
Vanuatu
Venezuela
Vietnam
Wallis y Futuna
Yemen
Zambia
Zimbabue
Universitat Internacional Valenciana - Valencian International University S.L., tratará sus datos personales conforme a su solicitud para contactarle e informarle del programa seleccionado de cara a las dos próximas convocatorias del mismo, pudiendo contactar con usted a través de medios electrónicos (WhatsApp y/o correo electrónico) y por medios telefónicos, siendo eliminados una vez facilitada dicha información y/o transcurridas las citadas convocatorias.

Ud. podrá ejercer los derechos de acceso, supresión, rectificación, oposición, limitación y portabilidad, mediante carta a Universitat Internacional Valenciana - Valencian International University S.L. - Apartado de Correos 221 de Barcelona, o remitiendo un email a rgpd@universidadviu.com. Asimismo, cuando lo considere oportuno podrá presentar una reclamación ante la Agencia Española de protección de datos.

Podrá ponerse en contacto con nuestro Delegado de Protección de Datos mediante escrito dirigido a dpo@planeta.es o a Grupo Planeta, At.: Delegado de Protección de Datos, Avda. Diagonal 662-664, 08034 Barcelona.